US009411693B2

a2 United States Patent

Solihin

US 9,411,693 B2
Aug. 9,2016

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(86)

87

(65)

(1)

(52)

(58)

DIRECTORY ERROR CORRECTION IN
MULTI-CORE PROCESSOR
ARCHITECTURES

Inventor: Yan Solihin, Raleigh, NC (US)

Assignee: Empire Technology Development LL.C,
Wilmington, DE (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 664 days.

Appl. No.: 13/817,695

PCT Filed: Jul. 31, 2012

PCT No.: PCT/US2012/048997

§371 (D),

(2), (4) Date: Feb. 19, 2013

PCT Pub. No.: W02014/021853
PCT Pub. Date: Feb. 6,2014

Prior Publication Data

US 2014/0040676 A1 Feb. 6, 2014

Int. Cl.

GO6F 11/16 (2006.01)

GO6F 11/10 (2006.01)

GO6F 11/20 (2006.01)

GO6F 12/08 (2016.01)

U.S. CL

CPC ... GOGF 11/1612 (2013.01); GO6F 11/1064

(2013.01); GO6F 11/1666 (2013.01); GO6F
12/0815 (2013.01); GO6F 12/0817 (2013.01);
GO6F 11/20 (2013.01)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,633,958 B1* 10/2003 Passint GOGF 12/0826
711/119
2002/0124143 Al 9/2002 Barroso et al.
2003/0163543 Al 8/2003 Deneroff
2007/0038798 Al 2/2007 Bouchard et al.
2010/0138607 Al 6/2010 Hughes et al.
2010/0180084 Al* 7/2010 Cypher GOGF 12/0817
711/135
(Continued)
OTHER PUBLICATIONS

Zhang, Wei, et al. “ICR: In-cache replication for enhancing data
cache reliability” IEEE, 2003.*

(Continued)

Primary Examiner — Charles Rones

Assistant Examiner — Hewy Li

(74) Attorney, Agent, or Firm — Moritt Hock & Hamroff
LLP; Steven S. Rubin, Esq.

(57) ABSTRACT

Technologies are generally described that relate to processing
cache coherence information and processing a request for a
data block. In some examples, methods for processing cache
coherence information are described that may include storing
in a directory a tag identifier effective to identify a data block.
The methods may further include storing a state identifier in
association with the tag identifier. The state identifier may be
effective to identify a coherence state of the data block. The
methods may further include storing sharer information in
association with the tag identifier. The sharer information
may be effective to indicate one or more caches storing the
data block. The methods may include storing, by the control-
ler in the directory, replication information in association
with the sharer information. The replication information may
be effective to indicate a type of replication of the sharer
information in the directory, and effective to indicate repli-
cated segments.

31 Claims, 8 Drawing Sheets

Tile
18 __102
18 130 31 132 100
Proce” [a0 || [[aso|| [[as2]]| |[as2]
ssor Cache Memory
112 110) Controller
pirectory|[| 4 [133 134 135 136 8
) o T P P Y B | ,
= 7 U | [asa || |[ase || [[ass || ([]| T ;
]
Die |
! J
- e
UGN S . 1 \/
I
:174\ \1‘7} 178 180 12 183 190 200 49 202 194 204 195 206
|
|| Tag | State [ECC Type | Segment/Set Index Value | BCC/EDC |[Segment O | P Segment 1 [P | Segment 2 [P [Segment3 [P|
D B SR [Seg? [Seg3 | Seg0 | Segl 1100 0001 10 000
I[P B ER__|Row3 1010 00001 00 000
j[L€ [V ER__ [Row2 1010 000001 00! 000!
Nz EM FR 1111 10 11 000!
e s UR 0101 000001 00 010
]
]
! 000000 111110

US 9,411,693 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2010/0185897 Al 7/2010 Abts et al.
2010/0274971 Al 10/2010 Solihin

OTHER PUBLICATIONS

Sanchez, Daniel and Kozyrakis, Christos. “SCD: A Scalable Coher-
ence Directory with Flexible Sharer Set Encoding.” IEEE. 2012.*
Borkar, S. & Chien, A. A., The Future of Microprocessors, Commu-
nications of the the ACM, pp. 67-77, vol. 54, No. 5.

Conway, P. et al., Cache Hierarchy and memory Subsystems of the
AMD Opteron Processor, IEEE Micro, Mar. 2010, pp. 16-29, vols.
30, Issue 2.

Lee H. et al., Perfectory: A Fault-Tolerant Directory Memory Archi-
tecture, IEEE Transactions on Computers, May 2010, 638-650, vol.
59, No. 5.

Alameldeen, A. R. et al., Energy-Efficient Cache Design Using Vari-
able-Strength Error-Correcting Codes, Proc. of the International
Symposium on Computer Architecture, 2011, 11 pages.

Wilkerson, C. et al., Reducing Cache Power with Low-Cost, Multi-
bit Error-Correcting Codes, Intel Labs, ISCA’ 10, Jun. 19-23, 2010,
11 pages.

International Search Report and Written Opinion for application with
application No. PCT/US12/48997, dated Nov. 26, 2012, 16 pages.

* cited by examiner

US 9,411,693 B2

Sheet 1 of 8

Aug. 9,2016

U.S. Patent

Dad | seryg]|

03[aes |

mw._._

——— e ————

/

L

Jellohuon

AJOWBIA “

1425

JajjosuoD

Aopaug

00l

c0l

oGt qar ¥St €St
9ct el ¥EL eel
<Gl 1at oSt 0rt
t4 TeT 0tt 8IT

olr
ayoen

gl
SllL

US 9,411,693 B2

Sheet 2 of 8

Aug. 9,2016

U.S. Patent

d| gwowSas | g | ¢ ywowsdS | g | 1Iwowsdes |4 | owowdas || Daa/DDa | aneA xepul 1eSauswdag | odkA] 03| esess Sel
/ / / / ~ ~
gz 9L vz q% Nﬁ 261 O“ mi /mm: N o8l Suo Wt
| 4|/ ||||||||||||||||||||(/||||| |||||(V/|||||_
L~ fob % A1 0LL
fm—— -
_
_
a1 AT|||'.
_
: | %7 T 5T £oT / o
||||||| / |~
— — —_— 1425 Jajjonuod
ag) €l cl PEL eel / Alo1oaa1g
Ja|johuon 1 [\
AloWwapy — — — — ayoen
¢Sl LGl 0S1 0Ll
gl et 0ct 8Lt
0L 1 a7

3L

US 9,411,693 B2

Sheet 3 of 8

Aug. 9,2016

U.S. Patent

| |
| |
| |
| |
|
I 001001 000010 100000 070101 AN S ! “
! OTTIII OTTIII OTTI11 OTTIII A W3 Z|\
_ 000000 000001 100000 001010 M0y A n 9] _
[000000 000001 100000 001010 £ Moy dd S d
_ 100001 000110 100001 000110 1325 | 0398 | €395 | 7825 | ¥S S vl
_ d | gyowsag | | 7 wwdw3dg | d | 1Iudwdog |4 | 0 wewses | DAT/DDT [dneA X3pul 1oSpudwsds | ddA 03| 9138 8e) “
7 7 7 7 7 7 7 N N N <
moom %L vz ek Zoz b ooz 061 x__ Yol ogr 84 E/ﬂ 721 m
T W/ |||||||||||||||
I el 0Lk
|
|
oig
|
| 9G1 59 Sl €Sl \ 0zl
||||||| |~
_ _ — 4% Jsjonuon]
g8 9¢l cl el egel A10108.410
/
J8(|0)u0D oLl
fowsyy ™ — — — — ayoen
Sl LGl 0S| oLl
00l zT TeT oeT 3T
201 grr
9|l L

US 9,411,693 B2

Sheet 4 of 8

Aug. 9,2016

U.S. Patent

OLLLLL < 000000

| |
| _
| |
“ 001001 000010 100000 010101 an S g
“ 000000 OTTIIT OITTI1 OLTTII R:E| E| z _
I 000000 000001 100000 001010 C 40y IH n 9) _
" 000000 000001 100000 001010 ¢ M0y dH S d|i
| 100001 000110 100001 000110 1895 | 089S | ¢80 | ¢85 | ¥S S vl
“ d | giuowsddg | | ¢ wowddg | d | 1wowddg |4 | 0wowddg || DAF/DDH | dN[EA Xdpu] J0gAuewFdg | ddA T R EES Sel |
[AN 4 / VA 7 N S 0 S <
A G C AR 061 % e ogr % ﬁﬂ/ viL |
_
e e e mm|_\ |||||||||||||||||| % |||||||||||||||
o zil 0Ll
_
_
ald _T "
| — — — — 7
||||||| .“ 9G1 Gal1 Sl ¢al Vi 0zl
, |~
— — —_— 1425 ssji0uon]
a8l ocl €l 7EL €el , Aoyaag
Js||onuod | oLt
Alowsy _ _ _ _ 9yoe)
sl LGl oGl oLl
001 zT TeT 0T 8TT
0L 8IT
9L

US 9,411,693 B2

Sheet 5 of 8

Aug. 9,2016

U.S. Patent

_ _
_ _
_ _
_ _
_ 001001 000010 100000 JOIIH AN S g _
_ 000000 OITIIT OITITT OTTIIT qd W3 Z _
_ 000000 000001 100000 001010 7 MmOy piel n 2 i
_ 000000 000001 100000 001010 g Moy ¥q S d _
! 100001 000110 100001 000110 139g | 05908 | €305 | 328 | IS S v |
id | gwowdog | g | 7 wowsog | d | 1wewdsg [d | 0wewsdes || Dad/D0d | dnjeA xopu] 1egaudwsag | odA | 03| @S 3el |,
4 7 7 7 4 ~N N _
IS0z d6L e b bz L om . /mm: Vol 081 821 9Ll Wt_
. .. |||||(/ ||||| _
(/w? /
€0 ziL 0Ll
I |
_ _
“ alg _klll'v \
_
| — —_ — —
L __ 9G1 GGl Gl £q1 7 0zl
— —_— —_— 142 J9|jouon L
agl ¢l Gel vel mﬂm €el Aoyauag
/ 5o, X —
Ja|joluon Obmo 0oLl
Klows |y gl — — — /.\" — ayoed
cGl LGl 0S1 0z oLl
001 zer TeT oer || s
AN
No_\\\\ Zle arT
dlll

U.S. Patent Aug. 9,2016 Sheet 6 of 8 US 9,411,693 B2

S2
\ Monitor, by a controller, in the directory, memory requests in the multi-core

Processor

l

\ Store, by the controller, in the directory, a tag identifier effective to identify a
data block

S6 | Store by the controller, in the directory, a state identifier in association with the

tag identifier, the state identifier effective to identify a coherence state of the data
block

:

g8 | Store by the controller, in the directory, sharer information in association with

\ | the tag identifier, the sharer information effective to indicate one or more caches

storing the data block

l

S10 | Store by the controller, in the directory, replication information in association

with the sharer information, the replication information effective to indicate a

type of replication of the sharer information in the directory

Fig. 6

US 9,411,693 B2

Sheet 7 of 8

Aug. 9,2016

U.S. Patent

_ wnipaw _ _ wnipsw
|

_
_ wnipew o|qepess |
| SUOHEOUNWWOdY Tig _

_
_ algqeplodaly ___ _ _ -18indwiod 506

*A1030011p 91} UT UOTIRWIIOJUI JoTRYS ST JO uoneordsr Jo odLy
© 91BIPUI 0] 9AT103]J9 UONEWLIOJUI uoneor[dal o1y “UOTLWLIONI IOIRYS o) [ILM WONRIO0sse Ul noyeuuojur uoneorydor
10 $}20[q B1Ep oY) SUMOIS SOYILD
3JOWI JO SUO SJESIPUL 01 SANI3]J2 UOHBULIOIUL JOJBYS SY) ‘ISTIUSPI Se) oY1 UM GOUEID0SSE Ul UONBULIOTUT JOTeyS
10 Y2019 BIEP
1} JO 2J8]S SOUIAYOD B AJIIUSPI 03 SANDALJ ISJHUSPI E)S) “ISTIUSPI Te) oY) YIIM UOTIRIDOSSE UI JOT[IUSPI 818)S B
10 5[90[q BIRP © AJIUSPI 0] SATIONIS Joynuapl Sey v
:A1010071p o1} UI “I9[TONU0d € Aq ‘Suni0)s ‘Sunroymowt 03 95uodsar Ul 0] SUOIONIISUI JI0UL IO SUQD
Io ‘108s0001d 2109-nyNUX 9 LI Ss3senbor Lxowowr ‘AI010011p Y3 UI “IO[[ONU0S € AqQ “FULIOIUOW JOJ SUONONNSTT SIOWL JO SU
30 $308$9001d 2109-1NW © JO AI0JO3IIP ¥ Ul UOITEILIOJUL 9JUIIYOD Y785 FULI0IS 10] POYISW B JO] SUOHONLSUI 310U 10 U
JO 9u0 1589] 1Y

0t

‘wnipaw Buueaq [eubis v Zog

"1onpold weiboud Jendwod y

0¢

US 9,411,693 B2

Sheet 8 of 8

Aug. 9,2016

U.S. Patent

(zop)
(s)zonag I

oNILNdNOD N
¥3HIO

5

(s).Ly0d

(vov)

“WINOD

(o9v)
H3ITIOYINOD
MHOMLIN

(8s¥)

(s)Luod

8 Ol

on

(9s¥)

A”v YITIOHLNCD
FOV4d3LN|

137IVEvYd

(¥SP)

Aﬂv YITIOHLNOD
Eel-EE R

WI¥3S

(V22X ECEMN RN EEREIEER|

(zsp)

(s)Luod

AV

(0sP) LN

AHv ONISS3O0Nd

clany

(8¥¥) LiNO
ONISS3O0dd
SOIHAYHS)

(Otp) sng FovAuILN|

— e ——— —— —— ———— — ——— —— — — — — — — —

(yep) sSng 30v4u3IN] FOVHOLS
- ~ - —~ - ~
(oet) (agH "b69) (anarao “69)
¥ITIOUINOD (gep) IovHOLS (ogp) 3oveoLS
20v4uILIN)/sNg 31aYAOWIH-NON 21aYACWIY

A {g0¥) sng Adona —/

~

-
(8LY)
HIATIOHLINOD AJOWIN

11

(9zd)
Y1vQ NOILOIHH0D

HOHY3 AHO103dIg

(oL¥)
SHIALSIOTY

(1)
dsamnd4/nv
JH0D H0SS3aT0dd

(9zv)
WHLIHOOTY
NOILO3HH0D
HOMN3 AHOL1D34IJ

(22y) NOILvoriday

(ozv)
WILSAS ONILYH3IdO

@) (o)
IHOVYYD IHOVYD)
Z 13A37 | 13A37
dsq/Oom/dn

WYH/NOY

(F0p) J0553509d

US 9,411,693 B2

1
DIRECTORY ERROR CORRECTION IN
MULTI-CORE PROCESSOR
ARCHITECTURES

CROSS REFERENCE TO RELATED
APPLICATION

This application is a U.S. National Stage filing under
U.S.C. §371 of International Application No. PCT/US12/
48997 filed Jul. 31, 2012. The disclosure of the International
Application is hereby incorporated by reference in its
entirety.

BACKGROUND

Unless otherwise indicated herein, the materials described
in this section are not prior art to the claims in this application
and are not admitted to be prior art by inclusion in this section.

In multi-core processor architectures, multiple processor
cores may be included in a single integrated circuit die or on
multiple integrated circuit dies that are arranged in a single
chip package. A cache may be used to store data for access by
one or more of the processor cores. The data can be a subset
of data stored in a larger memory that is typically located
outside of the die. Each processor core may be provided with
a cache that is used to store data for the corresponding pro-
cessor. As a single piece of data may be stored in multiple
caches, a cache coherence protocol may be employed to keep
track of the data stored in multiple caches. State information
for data blocks in the cache may be stored in a directory and
a cache coherence protocol may be implemented to ensure
that the appropriate data is identified and returned in response
to requests for data blocks.

SUMMARY

In some examples, methods for storing cache coherence
information in a directory of a multi-core processor are gen-
erally described. Some methods may include monitoring, by
a controller, in the directory, memory requests in the multi-
core processor. In response to monitoring, some methods may
include storing, by the controller, in the directory a tag iden-
tifier effective to identify a data block. In response to moni-
toring, some methods may include storing, by a controller, in
the directory, a state identifier in association with the tag
identifier. The state identifier may be effective to identify a
coherence state of the data block. In response to monitoring,
some methods may include storing, by the controller, in the
directory, sharer information in association with the tag iden-
tifier. The sharer information may be effective to indicate one
or more caches storing the data block. In response to moni-
toring, some methods may include storing, by the controller,
in the directory, replication information in association with
the sharer information. The replication information may be
effective to indicate a type of replication of the sharer infor-
mation in the directory.

In some examples, methods for processing a request for a
data block in a multicore processor are generally described.
Some methods may include receiving, by a controller in a
cache coherence directory of the multicore processor, the
request. Some methods may include identifying, by the con-
troller in the directory, a tag identifier associated with the data
block. Some methods may include analyzing, by the control-
ler in the directory, a state identifier associated with the tag
identifier. The state identifier may be effective to indicate a
cache coherence state of the data block. Some methods may
include analyzing, by the controller in the directory, sharer

10

15

20

25

30

35

40

45

50

55

60

65

2

information associated with the tag identifier. The sharer
information may be effective to identify one or more caches
storing the data block. The sharer information may be stored
in a sharer table including at least two segments. Some meth-
ods may include analyzing, by the controller in the directory,
replication information associated with the sharer informa-
tion. The replication information may be effective to indicate
atype of replication of the sharer information in the directory.
Some methods may include detecting, by the controller in the
directory, an error in one or more segments in the sharer table.
Some methods may include, in response to detecting an error
in a first segment in the sharer table, identifying, by the
controller, using the replication information, one or more
other segments that replicate the sharer information in the first
segment. In response to detecting the error, some methods
may include processing, by the controller, the request by
analyzing the sharer information from the identified one or
more other segments.

In some examples, multi-core architectures effective to
store cache coherence information in a directory of a multi-
core processor are generally described. The architectures may
include a first tile, a second tile, a controller and a memory. In
some architectures, the first tile may include a first processor
and a first cache. In some architectures, the second tile may
include a second processor and a second cache. In some
architectures, the controller may be configured in communi-
cation with the first tile and the second tile. In some architec-
tures the memory may be configured in communication with
the controller. In some architectures, the controller may be
effective to monitor memory requests in the multi-core pro-
cessor. In response to the memory requests, the controller
may be effective to store, in the directory, a tag identifier
effective to identify a data block. In response to the memory
requests, the controller may be effective to store, in the direc-
tory, a state identifier in association with the tag identifier. The
state identifier may be effective to identify a coherence state
of the data block. In response to the memory requests, the
controller may be effective to store, in the directory, sharer
information in association with the tag identifier. The sharer
information may be effective to indicate one or more caches
storing the data block. In response to the memory requests,
the controller may be effective to store, in the directory,
replication information in association with the tag identifier.
The replication information may be effective to indicate a
type of replication of the sharer information in the directory.

The foregoing summary is illustrative only and is not
intended to be in any way limiting. In addition to the illustra-
tive aspects, embodiments, and features described above, fur-
ther aspects, embodiments, and features will become appar-
ent by reference to the drawings and the following detailed
description.

BRIEF DESCRIPTION OF THE FIGURES

The foregoing and other features of this disclosure will
become more fully apparent from the following description
and appended claims, taken in conjunction with the accom-
panying drawings. Understanding that these drawings depict
only several embodiments in accordance with the disclosure
and are, therefore, not to be considered limiting of its scope,
the disclosure will be described with additional specificity
and detail through use of the accompanying drawings, in
which:

FIG. 1 illustrates an example system that can be utilized to
implement directory error correction in a multi-core proces-
sor architecture;

US 9,411,693 B2

3

FIG. 2 illustrates an example system that can be utilized to
implement directory error correction in a multi-core proces-
sor architecture;

FIG. 3 illustrates an example system that can be utilized to
implement directory error correction in a multi-core proces-
sor architecture;

FIG. 4 illustrates an example system that can be utilized to
implement directory error correction in a multi-core proces-
sor architecture;

FIG. 5 illustrates an example system that can be utilized to
implement directory error correction in a multi-core proces-
sor architecture;

FIG. 6 depicts a flow diagram for an example process for
implementing directory error correction in a multi-core pro-
cessor architecture;

FIG. 7 illustrates a computer program product that can be
utilized to implement directory error correction in a multi-
core processor architecture; and

FIG. 8 is a block diagram illustrating an example comput-
ing device that is arranged to implement directory error cor-
rection in a multi-core processor architecture,

all arranged according to at least some embodiments
described herein.

DETAILED DESCRIPTION

In the following detailed description, reference is made to
the accompanying drawings, which form a part hereof. In the
drawings, similar symbols typically identify similar compo-
nents, unless context dictates otherwise. The illustrative
embodiments described in the detailed description, drawings,
and claims are not meant to be limiting. Other embodiments
may be utilized, and other changes may be made, without
departing from the spirit or scope of the subject matter pre-
sented herein. It will be readily understood that the aspects of
the present disclosure, as generally described herein, and
illustrated in the Figures, can be arranged, substituted, com-
bined, separated, and designed in a wide variety of different
configurations, all of which are explicitly contemplated
herein.

This disclosure is generally drawn, inter alia, to methods,
apparatus, systems, devices, and computer program products
related to directory error correction in multi-processor archi-
tectures.

Briefly stated technologies are generally described that
relate to processing cache coherence information and pro-
cessing a request for a data block. In some examples, methods
for processing cache coherence information are described
that may include storing in a directory a tag identifier effective
to identify a data block. The methods may further include
storing a state identifier in association with the tag identifier.
The state identifier may be effective to identify a coherence
state of the data block. The methods may further include
storing sharer information in association with the tag identi-
fier. The sharer information may be effective to indicate one
or more caches storing the data block. The methods may
include storing, by the controller in the directory, replication
information in association with the sharer information. The
replication information may be effective to indicate a type of
replication of the sharer information in the directory, and
effective to indicate replicated segments.

FIG. 1 illustrates an example system that can be utilized to
implement directory error correction in multi-core processor
architectures, arranged in accordance with at least some
embodiments described herein. An example system 100 may
include a die 102 including a plurality of tiles, and/or memory
controller 188. Focusing on tile 118 for illustration, each tile

15

25

40

45

4

118 may include a cache 110, one or more processors or
processor cores (hereinafter referred to as “processor”) 112,
and/or a directory 114. Processor 112 may be adapted to
process data including code (hereinafter both data and/or
code may be referred to as “data block™). Cache 110 may be
configured to store a data block local to processor 112. Direc-
tory 114 may include a directory controller 120. Directory
controller 120 may be used to control operations of directory
114 as explained herein.

As is described in more detail below, directory controller
120 may be configured to store an error correction code
and/or an error detection code in directory 114 to handle
errors that may occur in directory 114. An error correction
code may be used in association with data in tag and state
fields and an error detection code may be used in association
with data in sharer fields. Over time, as die 102 is used, errors
may occur in directory 114. For example, hardware errors
may occur where physical components in hardware break
down over time or due to imperfection in manufacturing. Soft
errors may occur such as when a logic 0 value erroneously
drifts to a logic 1 value or when a logic 1 value erroneously
drifts to a logic 0 value (e.g., in situations where the logic gate
is struck by a particle emitted in the air). Error correction and
detection codes as discussed herein may be used to detect
and/or correct these described errors and others.

Die 102 may include a matrix (e.g., array) of tiles 118,
130-136 including respective caches 110, 150-156. Each tile
may also include one or more of a respective processor 112
and/or directory 114. Each tile in die 102 may be substantially
the same as in a homogenous arrangement, or some tiles may
be different as in a heterogeneous arrangement. Die 102 may
be arranged in communication with another die 103 so that
data blocks may be shared among a plurality of dies. Die 102
may be further arranged in communication with memory
controller 188.

Directory 114 may be a data structure that identifies (e.g.,
indexes) a location associated with each data block that is
stored in the tiles of die 102. Directory 114 may be located in
a single tile on die 102, distributed among many or all tiles,
implemented separately from other tiles, or distributed
between structures in the die and off the die. If directory 114
is distributed, for example, a first range of addresses (such as
0x0000-0x1000) may be stored in a first tile, a second range
of'addresses (such as 0x1001-0x2000) stored in a second tile,
etc. Directory 114 in the figure thus may illustrate a first
portion of an entire die directory. A first portion may be stored
in tile 118 and additional portions may be stored in other tiles
such as tiles 130, 131, 132, etc.

Directory 114 may include a tag identifying a data block
stored in die 102, along with a state of the data block and
sharer information effective to indicate the caches that may be
sharing the data block. For example, directory 114 may use a
MESI cache coherence protocol or its variants, such as
MOESI, MSI, MOSI etc. In a MESI protocol, directory 114
may keep track of sharing states for data blocks, including:

exclusive-modified (“EM”) such as when a data block has
been modified since the block was retrieved from a main
memory or when a data block is in one cache but the block
matches a main memory;

shared (“S”) such as when the data block may be stored in
one or more caches and the data block matches the main
memory;

invalid (“T””) such as when the data block is invalid;

uncached (“U”) such as when the data block is not cached;
and/or

owned (“O”) such as when the indicated data block
includes the most recent copy of the data block.

US 9,411,693 B2

5

FIG. 2 illustrates an example system that can be utilized to
implement directory error correction in multi-core processor
architectures, arranged in accordance with at least some
embodiments described herein. FIG. 2 is substantially similar
to system 100, with additional details. Those components in
FIG. 2 that are labeled identically to components of FIG. 1
will not be described again for the purposes of clarity.

Directory 114 may be configured to monitor memory
requests in die 102 and, in response, store coherence infor-
mation relating to data blocks stored in caches. For example,
directory controller 120 may be configured to store in direc-
tory 114 atag/statetable 170, a segment or setindex table 172,
and/or a sharer table 186 relating to data blocks stored in
caches in die 102. Tag/state table 170, segment or set index
table 172 and sharer table 186, in combination, may form
directory 114. A row in directory 114 may be divided into two
or more columns belonging to one or more of tables 170,172,
186. Tag/state table 170 may include information in fields
such as tag 174, state 176 and/or error correction code
(“ECC”) 178. Error correction code 178 may correspond
one-to-one to a row tag and state, or one-to-many rows of tags
and states. Tag field 174, state field 176 and error correction
code field 178 may be associated with each other. Tag field
174 may include indications of blocks of data stored in die
102. State field 176 may indicate a coherence state of these
datablocks using one of the above mentioned protocols. Error
correction code 178 may include a code that may be used to
correct errors in entries in tag field 174 and/or state field 176.
Error correction code 178 may be used to replicate bits in tag
field 174 and/or state field 176. Enough bits may be replicated
so that if an error does occur, code 178 may be used to detect
that the error occurred, identity the bit with the error, and flip
the applicable bit to correct the error. Error correction code
178 may use bit interleaving.

Segment or set index table 172 may include information
such as a type field 180, a segment or set index value field 182
and an error correction code/error detection code field 183.
Datablocks in a row of segment or set index table 172 may be
stored by directory controller 120 in association with data
blocks in a corresponding row in tag/state table 170. Segment
or set index table 172 may also include an error correction
code or error detection code field 183 that may be used to
detect and/or correct errors in segment or set index table 172.
As discussed herein, type field 180 may include replication
information identifying a type of replication used by direc-
tory controller 120 for data blocks stored in sharer table 186.
In an example, four different replication types may be used
where sharer information is stored in one or more segments of
sharer table 186. The sharer information may relate to a row
in sharer table 186 and/or one or more segments in sharer
table 186:

“UR”—which may correspond to Un-Replicated, where
sharer information is not replicated;

“SR”—which may correspond to Segment-Replicated,
where sharer information stored in two or more segments is
replicated in other segments in the same directory row;

“ER”—which may correspond to Entry-Replicated, where
an entire row of sharer information is replicated in another
row; and

“FR”—which may correspond to Full Segment-Repli-
cated, where the sharer information stored in one segment is
replicated in all other segments in the same directory row.

The sharer information may be useful to identify caches in
the die that may store the data block corresponding to the tag
identifier associated with the sharer information. The sharer

20

25

35

40

45

55

6

information may be stored in one or more segments of sharer
table 186 in one or more formats, including but not limited to
the following formats:

Full bit vector—in the full bit vector format, each bit in a
sharer segment may correspond to one cache 110.

Pointer—in the pointer format, two or more bits in a sharer
segment may identify one cache, and each cache may be
identified by a unique combination of the values of the two or
bits in a sharer segment. For example, “00” may correspond to
cache 110, “01” may correspond to cache 150, “10” may
correspond to cache 151, and “11” may correspond to cache
152.

Coarse bit vector—in the coarse bit vector format, each bit
in a sharer segment may identify a group of two or more
caches. For example, the first bit may correspond to a group
that includes cache 110 and 150, and the second bit may
correspond to a group that includes cache 151 and cache 152,
etc.

Sharer table 186 may be divided into two or more segment
fields 190, 192, 194, 196 (segments 0, 1, 2 and 3 are shown in
the figure) and two or more parity fields 200, 202, 204, 206. A
size and number of segments may be defined based on a
number of bits used to encode an identifier of a cache accord-
ing to one or more of the above formats. Parity fields 200, 202,
204, 206 may correspond to a 1 bit value that may be used to
indicate erroneous or error-free data blocks in the correspond-
ing segment.

Data blocks may be stored in sharer table 186 by directory
controller 120 in a manner effective to replicate the sharers
data blocks. Replication may be used to detect and correct
errors in the sharer information. Through replication, sharer
table 186 may allow for error detection and correction using
an error detection code in the form of parity fields 200, 202,
204, 206.

For example, if relevant sharer information is stored in
segment 0, that same sharer information may be replicated in
segments 1, 2 and 3. If the sharer information indicates that
one cache is sharing the block of data associated with a tag
identifier, an identifier for that one cache may be stored in one
segment (e.g. segment 0). Directory controller 120 may be
configured to replicate the cache identifier in the other seg-
ments, such as segments 1, 2 or 3. In examples where blocks
are shared in only one or two caches, directory controller 120
may be configured to store identifiers for those caches in a
first set of segments, and replicate those identifiers in a second
set of the segments. Directory controller 120 may further be
effective to store in table 172 an identification of other loca-
tions in shared table 186, where sharer information may be
replicated. These other locations identified in sharer table 186
may be analyzed by directory controller 120 in the event of an
error so that an identification of a cache storing a requested
block may be found when an error is detected in one or more
segments of the sharer table.

FIG. 3 illustrates an example system that can be utilized to
implement directory error correction in multi-core processor
architectures, arranged in accordance with at least some
embodiments described herein. FIG. 3 is substantially similar
to system 100, with additional details. Those components in
FIG. 3 that are labeled identically to components of FIGS. 1
and 2 will not be described again for the purposes of clarity.

In the examples shown, block “Z” is indicated as being
stored in an exclusive modified state (“EM”) and so block Z is
stored by only one cache. Directory controller 120 may be
configured effective to read this EM state and determine that
full replication “FR” may be used. FR may be used because
anidentifier corresponding to only one cache should be stored
in sharer table 186 and the size in number of bits of such an

US 9,411,693 B2

7

identifier may be less than the size of a segment in the sharer
table. Directory controller 120 may be configured effective to
store an identifier corresponding to the cache storing block Z
(“1111107) in sharer table 186. Directory controller 120 may
be configured to replicate “111110” in all segments in sharer
table 186 in the same row as the tag for block Z. Directory
controller 120 may be effective to store “FR” in type field 180
in the same row associated with block Z.

Continuing with the examples shown, block A is indicated
as being shared by more than one cache (“S”). For example,
block A may be stored by a number of caches such that an
encoding for the identifier for those caches has a size less than
or equal to the size of half the number of available segments.
Because the size of the identifier corresponds to less than half
the number of available segments, segment replication SR
may be used. Directory controller 120 may be configured to
store identifiers for the two caches storing block A. As only
two segments (e.g. segments 0 and 1) are used to store the
sharer indications, two other segments (segments 2 and 3) are
available for replication of the sharer indications.

Directory controller 120 may be adapted to store identifiers
corresponding to the caches indicated as storing block A in
sharer table 186. Directory controller 120 may be configured
to store pointers in segment/set index table 172 pointing to
other locations in sharer table 186 where sharers data block
can be replicated. In the example, segment or set index table
172 may include a pointer indicating that segment 0 in sharer
table 186 includes replicated information for segment 2. “Seg
2” is shown in segment/set index table 172 in the first or
segment 0 slot. Similarly, segment or set index table 172 may
include a pointer indicating that segment 1 in sharer table 186
includes replicated information for segment 3. “Seg 3” is
shown in segment/set index table 172 in the second or seg-
ment 1 slot. Segment or set index table 172 may include a
pointer indicating that segment 2 in sharer table 186 includes
replicated information for segment 0. “Seg 0” is shown in
segment/set index table 172 in the third or segment 2 slot.
Segment/set index table 172 includes a pointer indicating that
segment 3 in sharer table 186 includes replicated information
for segment 1. “Seg 1” is shown in segment/set index table
172 in the fourth or segment 3 slot. In the described example,
block A may be stored by two caches. The identifier corre-
sponding to the first cache can be stored in sharer table 186 in
slots for segments 0 and 2. The identifier for the second cache
can be stored in sharer table 186 in slots for segments 1 and 3.

FIG. 4 illustrates an example system that can be utilized to
implement directory error correction in multi-core processor
architectures, arranged in accordance with at least some
embodiments described herein. FIG. 4 is substantially similar
to system 100, with additional details. Those components in
FIG. 4 that are labeled identically to components of FIGS. 1,
2 and 3 will not be described again for the purposes of clarity.

In examples where segment replication (“SR”) or full rep-
lication (“FR”) is used, directory controller 120 may also
perform error detection using the replicated data block. Error
detection may be performed by directory controller 120 com-
paring values for stored identifiers so that one or more bits of
error can be detected. Directory controller 120 may be
adapted to use a value of a cache identifier that is stored in at
least two different locations in sharer table 186. If a value is
stored in at least two different locations, there is a greater
likelihood that his value is not an error. In an example, for
block Z, full replication “FR” is indicated in type field 180 in
segment or set index table 172. Directory controller 120 may
analyze sharer table 186 and determine that fields 190, 192
and 194 all have a cache identifier of “111110”. As the cache
identifier “111110” is stored in at least two different locations

10

15

20

25

30

35

40

45

50

55

60

65

8

it is likely that this value is correct. Moreover, as field 196
indicates a different value, “000000”, it is likely that the value
in field 196 is incorrect. Directory controller 120 may be
configured to change the value in field 196 to indicate
“111110”.

Referring again to FIG. 3, block P is indicated as being
stored by more than one cache. In the example, block P may
be shared by a number of caches so that replication may not be
performed by segments in the same row because an identifier
for the caches that store block P may be larger in size than the
combined size of half the segments. For example, block P
may be stored in a numbers of caches corresponding to more
than half the number of segments. In the described example,
directory controller 120 may determine that block C is indi-
cated as being uncached (“U”). As block C is uncached,
storage space in the sharer table 186 in the row associated
with block C is available to be used. Directory controller 120
may be configured to use storage space in the row associated
with block C in sharer table 186 to store sharer information
for another block—such as block P. Directory controller 120
may be configured to store indications in table 172 indicating
that sharer information for block P is replicated in the second
and third rows of sharer table 186. The second and third rows
of sharer table 186 correspond to rows for block P and block
C. Directory controller 120 may indicate in table 172 that a
type of replication associated with block P is ER—entry-
replicated. Directory controller 120 may store a pointer in the
second row of table 172 indicating that data blocks for the
second row is replicated in the third row. Similarly, directory
controller 120 may be configured to store a pointer in the third
row of table 172 indicating that data blocks for row 3 is
replicated in row 2.

In the examples shown, block B is indicated as being
shared by too many caches, corresponding to a cache identi-
fier that is too large to use segment replication. For example,
block B is shown as shared in a number of caches that corre-
spond to a cache identifier that is larger than the combined
size of half the number of segments. Further, no other row
appears to be available in the sharer table since there are no
available rows where the state identifier is “U”. Directory
controller 120 may be configured to assign no replication
“UR” orun-replicated to block B. If an error is detected by the
directory controller relating to sharers data for block B, a
cache coherence error recovery protocol may be used.

FIG. 5 illustrates an example system that can be utilized to
implement directory error correction in multi-core processor
architectures, arranged in accordance with at least some
embodiments described herein. FIG. 5 is substantially similar
to system 100, with additional details. Those components in
FIG. 5 that are labeled identically to components of FIGS. 1,
2, 3 and 4 will not be described again for the purposes of
clarity.

Inthe example, block B is indicated as being un-replicated.
If an error is detected by directory controller 120 relating to
sharers data for block B, a cache coherence error recovery
protocol may be used. In such a cache coherence error recov-
ery protocol, directory controller 120 may be configured to
send a broadcast message 210 to all caches in die 102. The
message may include a request requesting locations of a
particular block. Tiles in die 102 may be configured to
respond to broadcast message 210 with reply messages 212.
Reply messages 212 may indicate whether the respective
caches are storing the block. Directory controller 120 may be
configured to receive the reply messages 212 and update
sharer table 186 in directory 114 accordingly.

Referring again to FIG. 3, in an example, directory con-
troller 120 may be configured to receive a request from a tile.

US 9,411,693 B2

9

The request may be for a particular block that may be stored
in one of the caches in die 102. Directory controller 120 may
be configured to analyze tag/state table 170 to identify a
particular row in directory 114. The particular row may be
storing a tag associated with the particular block. Once the
particular row is identified, directory controller 120 may be
configured to analyze the state field in the row to identify a
cache coherence state of the particular block. Directory con-
troller 120 may be configured to analyze type field 180 for the
particular row to determine a type of replication that may be
used for the sharer information for the particular block. Direc-
tory controller 120 may then analyze sharer table 186 to
determine an identifier of the cache or caches that may be
storing the particular block. If the corresponding parity field
200, 202, 204, 206 indicates that the sharer information is
error-free, directory controller 120 may use the determined
cache identifier to retrieve the particular block.

If the corresponding parity field indicates that the sharer
information is invalid, directory controller 120 may analyze
other locations in sharer table 186 for the sharer information.
The other locations may be based on the type of replication
identified in segment or set index table 172. If a segment
replication “SR” is identified in type field 180, directory
controller 120 may analyze another segment in the particular
row of sharer table 186 identified by the pointer in table 172.
If a full segment replication “FR” is indentified in type field
180, directory controller 120 may also analyze another seg-
ment in the particular row. If an entry replication “ER” is
indentified in type field 180, directory controller 120 may
analyze another row in sharer table 186 identified by the
pointer in table 172. In examples where all of the data blocks
in sharer table 186 indicate an invalid parity status or where
the replication type indicates un-replicated “UR”, directory
controller 120 may use the cache coherence error recovery
protocol discussed above to identify a location of the particu-
lar block. Directory controller 120 may be configured to send
a request to all tiles in the die requesting the particular block.
When the location of the particular block is determined,
directory controller 120 may be configured to overwrite the
corresponding segment or segments in sharer tables 186 with
the correct sharers data blocks.

Parity fields 200, 202, 204, 206 may be modified by direc-
tory controller 120 based on coherence events. An example of
a coherence event may be where a cache requests to read a
block where the directory indicates that the block is shared by
the requesting cache. Another example of a coherence event is
where a cache requests to write to a block and the directory
indicates that the block is not stored by the cache requesting
to write.

Among other possible benefits, a system in accordance
with the present disclosure may allow for use of a directory
based cache coherence protocol with error detection, without
necessarily using large amount of storage overhead. Multiple
bit error correction and detection may be implemented so that
multi-bit errors, incorrectly identifying caches storing a
block, may be detected and corrected. An error correction
code need not be used for all data blocks in directory 114
thereby reducing an amount of space used by directory 114.
The error detection code, e.g. in the form of a parity field, may
be sufficient to correct errors because a replication may be
available. An error correction code may be used for tag and
state fields. An error detection code may be used for sharer
fields.

FIG. 6 depicts a flow diagram for an example process for
implementing directory error correction in a multi-core pro-
cessor architecture, arranged in accordance with at least some
embodiments described herein. In some examples, the pro-

10

15

20

25

30

35

40

45

50

55

60

65

10

cess in FIG. 6 could be implemented using system 100 dis-
cussed above and may be used for storing cache coherence
information in a directory of a multi-core processor.

An example process may include one or more operations,
actions, or functions as illustrated by one or more of blocks
S2, S4, S6, S8 and/or S10. Although illustrated as discrete
blocks, various blocks may be divided into additional blocks,
combined into fewer blocks, or eliminated, depending on the
desired implementation.

Processing may begin at block S2, “Monitor, by a control-
ler, in the directory, memory requests in the multi-core pro-
cessor.” At block S2, a controller may monitor memory
requests.

Processing may continue from block S2 to block S4,
“Store, by the controller, in the directory, a tag identifier
effective to identify a data block.” At block S2, a controller
may be configured (e.g., via executable instructions) to store
a tag identifier effective to identify a data block.

Processing may continue from block S4 to block S6, “Store
by the controller, in the directory, a state identifier in associa-
tion with the tag identifier, the state identifier effective to
identify a coherence state of the data block.” At block S4, the
directory controller may be configured effective to store a
state identifier in association with the tag identifier. The state
identifier may identify a coherence state of the block identi-
fied by the tag.

Processing may continue from block S6 to block S8, “Store
by the controller, in the directory, sharer information in asso-
ciation with the tag identifier, the sharer information effective
to indicate one or more caches storing the data block.” At
block S8, the directory controller may be configured to store
sharer information indicating caches that may be storing the
data block.

Processing may continue from block S8 to block S10,
“Store by the controller, in the directory, replication informa-
tion in association with the sharer information, the replication
information effective to indicate a type of replication of the
sharer information in the directory.” At block S10, the direc-
tory controller may be configured effective to store replica-
tion information in association with the sharer information.
Thereplication information may indicate a type of replication
of the sharer information in the directory. For example, the
sharer information may be replicated in multiples segments
of the same row, or the sharer information may be replicated
in another row, or the sharer information may be un-repli-
cated.

In examples where sharer information for a particular
block is determined to be invalid, the directory controller may
use the replication information. The replication information
may identify one or more segments in the sharer table that
replicate the sharer information. The processor may process
the request by analyzing the sharer information from the one
or more segments.

FIG. 7 illustrates an example computer program product
300 that can be utilized to implement a directory error cor-
rection in a multi-core processor architecture, arranged in
accordance with at least some embodiments described herein.
Computer program product 300 may include a signal bearing
medium 302. Signal bearing medium 302 may include one or
more instructions 304 that, when executed by, for example, a
processor, may provide the functionality described above
with respect to FIGS. 1-6. Thus, for example, referring to
system 100, one or more of processors 112 in tiles 118,
130-144 may undertake one or more of the blocks shown in
FIG. 7 in response to instructions 304 conveyed to the system
100 by signal bearing medium 302.

US 9,411,693 B2

11

In some implementations, signal bearing medium 302 may
encompass a computer-readable medium 306, such as, but not
limited to, a hard disk drive, a Compact Disc (CD), a Digital
Video Disk (DVD), a digital tape, memory, etc. In some
implementations, signal bearing medium 302 may encom-
pass a recordable medium 308, such as, but not limited to,
memory, read/write (R/W) CDs, R/W DVDs, etc. In some
implementations, signal bearing medium 302 may encom-
pass a communications medium 310, such as, but not limited
to, a digital and/or an analog communication medium (e.g., a
fiber optic cable, a waveguide, a wired communications link,
a wireless communication link, etc.). Thus, for example,
computer program product 300 may be conveyed to one or
more modules of the system 100 by an RF signal bearing
medium 302, where the signal bearing medium 302 is con-
veyed by a wireless communications medium 310 (e.g., a
wireless communications medium conforming with the IEEE
802.11 standard).

FIG. 8 is a block diagram illustrating an example comput-
ing device 400 that is arranged to implement directory error
correction in a multi-core processor architecture, in accor-
dance with at least some embodiments described herein. In a
very basic configuration 402, computing device 400 typically
includes one or more processors 404 and a system memory
406. A memory bus 408 may be used for communicating
between processor 404 and system memory 406.

Depending on the desired configuration, processor 404
may be of any type including but not limited to a micropro-
cessor (LP), a microcontroller (uC), a digital signal processor
(DSP), or any combination thereof. Processor 404 may
include one more levels of caching, such as a level one cache
410 and a level two cache 412, a processor core 414, and
registers 416. An example processor core 414 may include an
arithmetic logic unit (ALU), a floating point unit (FPU), a
digital signal processing core (DSP Core), or any combina-
tion thereof. An example memory controller 418 may also be
used with processor 404, or in some implementations
memory controller 418 may be an internal part of processor
404.

Depending on the desired configuration, system memory
406 may be of any type including but not limited to volatile
memory (such as RAM), non-volatile memory (such as
ROM, flash memory, etc.) or any combination thereof. Sys-
tem memory 406 may include an operating system 420, one
or more applications 422, and program data 424. Application
422 may include a directory error correction algorithm 426
that is arranged to perform the functions as described herein
including those described with respect to system 100 of FIGS.
1-3. Program data 424 may include directory error correction
data 428 that may be useful to implement a directory error
correction algorithm in multi-core processor architectures as
is described herein. In some embodiments, application 422
may be arranged to operate with program data 424 on oper-
ating system 420 such that directory error correction in multi-
core processor architectures may be provided. This described
basic configuration 402 is illustrated in FIG. 8 by those com-
ponents within the inner dashed line.

Computing device 400 may have additional features or
functionality, and additional interfaces to facilitate commu-
nications between basic configuration 402 and any required
devices and interfaces. For example, a bus/interface control-
ler 430 may be used to facilitate communications between
basic configuration 402 and one or more data storage devices
432 via a storage interface bus 434. Data storage devices 432
may be removable storage devices 436, non-removable stor-
age devices 438, or a combination thereof. Examples of
removable storage and non-removable storage devices

10

15

20

25

30

35

40

45

50

55

60

65

12

include magnetic disk devices such as flexible disk drives and
hard-disk drives (HDD), optical disk drives such as compact
disk (CD) drives or digital versatile disk (DVD) drives, solid
state drives (SSD), and tape drives to name a few. Example
computer storage media may include volatile and nonvolatile,
removable and non-removable media implemented in any
method or technology for storage of information, such as
computer readable instructions, data structures, program
modules, or other data.

System memory 406, removable storage devices 436 and
non-removable storage devices 438 are examples of com-
puter storage media. Computer storage media includes, but is
not limited to, RAM, ROM, EEPROM, flash memory or other
memory technology, CD-ROM, digital versatile disks (DVD)
or other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which may be used to store the desired
information and which may be accessed by computing device
400. Any such computer storage media may be part of com-
puting device 400.

Computing device 400 may also include an interface bus
440 for facilitating communication from various interface
devices (e.g., output devices 442, peripheral interfaces 444,
and communication devices 446) to basic configuration 402
via bus/interface controller 430. Example output devices 442
include a graphics processing unit 448 and an audio process-
ing unit 450, which may be configured to communicate to
various external devices such as a display or speakers via one
or more A/V ports 452. Example peripheral interfaces 444
include a serial interface controller 454 or a parallel interface
controller 456, which may be configured to communicate
with external devices such as input devices (e.g., keyboard,
mouse, pen, voice input device, touch input device, etc.) or
other peripheral devices (e.g., printer, scanner, etc.) via one or
more 1/O ports 458. An example communication device 446
includes a network controller 460, which may be arranged to
facilitate communications with one or more other computing
devices 462 over a network communication link via one or
more communication ports 464.

The network communication link may be one example of a
communication media. Communication media may typically
be embodied by computer readable instructions, data struc-
tures, program modules, or other data in a modulated data
signal, such as a carrier wave or other transport mechanism,
and may include any information delivery media. A “modu-
lated data signal” may be a signal that has one or more of its
characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limi-
tation, communication media may include wired media such
as a wired network or direct-wired connection, and wireless
media such as acoustic, radio frequency (RF), microwave,
infrared (IR) and other wireless media. The term computer
readable media as used herein may include both storage
media and communication media.

Computing device 400 may be implemented as a portion of
a small-form factor portable (or mobile) electronic device
such as a cell phone, a personal data assistant (PDA), a per-
sonal media player device, a wireless web-watch device, a
personal headset device, an application specific device, or a
hybrid device that include any of the above functions. Com-
puting device 400 may also be implemented as a personal
computer including both laptop computer and non-laptop
computer configurations.

The present disclosure is not to be limited in terms of the
particular embodiments described in this application, which
are intended as illustrations of various aspects. Many modi-
fications and variations can be made without departing from

US 9,411,693 B2

13

its spirit and scope, as will be apparent to those skilled in the
art. Functionally equivalent methods and apparatuses within
the scope of the disclosure, in addition to those enumerated
herein, will be apparent to those skilled in the art from the
foregoing descriptions. Such modifications and variations are
intended to fall within the scope of the appended claims. The
present disclosure is to be limited only by the terms of the
appended claims, along with the full scope of equivalents to
which such claims are entitled. It is to be understood that this
disclosure is not limited to particular methods, reagents, com-
pounds compositions or biological systems, which can, of
course, vary. It is also to be understood that the terminology
used herein is for the purpose of describing particular
embodiments only, and is not intended to be limiting.

With respect to the use of substantially any plural and/or
singular terms herein, those having skill in the art can trans-
late from the plural to the singular and/or from the singular to
the plural as is appropriate to the context and/or application.
The various singular/plural permutations may be expressly
set forth herein for sake of clarity.

It will be understood by those within the art that, in general,
terms used herein, and especially in the appended claims
(e.g., bodies of the appended claims) are generally intended
as “open” terms (e.g., the term “including” should be inter-
preted as “including but not limited to,” the term “having”
should be interpreted as “having at least,” the term “includes”
should be interpreted as “includes but is not limited to,” etc.).
It will be further understood by those within the art that if a
specific number of an introduced claim recitation is intended,
such an intent will be explicitly recited in the claim, and in the
absence of such recitation no such intent is present. For
example, as an aid to understanding, the following appended
claims may contain usage of the introductory phrases “at least
one” and “one or more” to introduce claim recitations. How-
ever, the use of such phrases should not be construed to imply
that the introduction of a claim recitation by the indefinite
articles “a” or “an” limits any particular claim containing
such introduced claim recitation to embodiments containing
only one such recitation, even when the same claim includes
the introductory phrases “one or more” or “at least one” and
indefinite articles such as “a” or “an” (e.g., “a” and/or “an”
should be interpreted to mean “at least one” or “one or
more”); the same holds true for the use of definite articles
used to introduce claim recitations. In addition, even if a
specific number of an introduced claim recitation is explicitly
recited, those skilled in the art will recognize that such reci-
tation should be interpreted to mean at least the recited num-
ber (e.g., the bare recitation of “two recitations,” without
other modifiers, means at least two recitations, or two or more
recitations). Furthermore, in those instances where a conven-
tion analogous to “at least one of A, B, and C, etc.” is used, in
general such a construction is intended in the sense one hav-
ing skill in the art would understand the convention (e.g., “a
system having at least one of A, B, and C” would include but
not be limited to systems that have A alone, B alone, C alone,
A and B together, A and C together, B and C together, and/or
A, B, and C together, etc.). In those instances where a con-
vention analogous to “at least one of A, B, or C, etc.” is used,
in general such a construction is intended in the sense one
having skill in the art would understand the convention (e.g.,
“a system having at least one of A, B, or C” would include but
not be limited to systems that have A alone, B alone, C alone,
A and B together, A and C together, B and C together, and/or
A, B, and C together, etc.). It will be further understood by
those within the art that virtually any disjunctive word and/or
phrase presenting two or more alternative terms, whether in
the description, claims, or drawings, should be understood to

10

15

20

25

30

35

40

45

50

55

60

65

14

contemplate the possibilities of including one of the terms,
either of the terms, or both terms. For example, the phrase “A
or B” will be understood to include the possibilities of “A” or
“B” or “A and B.”

In addition, where features or aspects of the disclosure are
described in terms of Markush groups, those skilled in the art
will recognize that the disclosure is also thereby described in
terms of any individual member or subgroup of members of
the Markush group.

As will be understood by one skilled in the art, for any and
all purposes, such as in terms of providing a written descrip-
tion, all ranges disclosed herein also encompass any and all
possible subranges and combinations of subranges thereof.
Any listed range can be easily recognized as sufficiently
describing and enabling the same range being broken down
into at least equal halves, thirds, quarters, fifths, tenths, etc. As
a non-limiting example, each range discussed herein can be
readily broken down into a lower third, middle third and
upper third, etc. As will also be understood by one skilled in
the art all language such as “up to,” “at least,” “greater than,”
“less than,” and the like include the number recited and refer
to ranges which can be subsequently broken down into sub-
ranges as discussed above. Finally, as will be understood by
one skilled in the art, a range includes each individual mem-
ber. Thus, for example, a group having 1-3 cells refers to
groups having 1, 2, or 3 cells. Similarly, a group having 1-5
cells refers to groups having 1, 2, 3, 4, or 5 cells, and so forth.

While various aspects and embodiments have been dis-
closed herein, other aspects and embodiments will be appar-
ent to those skilled in the art. The various aspects and embodi-
ments disclosed herein are for purposes of illustration and are
not intended to be limiting, with the true scope and spirit
being indicated by the following claims.

29 <

What is claimed is:
1. A method to store cache coherence information in a
directory of a multi-core processor, the method comprising:
monitoring, by a controller, memory requests in the multi-
core processor;

storing by the controller, in the directory, and based on the

memory requests:
a tag identifier effective to identify a data block;

a state identifier in association with the tag identifier, the
state identifier effective to identify a coherence state of
the data block;

sharer information in association with the tag identifier,
wherein the sharer information is effective to indicate
one or more caches that store the data block, and the
sharer information is stored in at least a first segment in
the directory; and

replication information in association with the sharer infor-
mation, wherein the replication information is effective
to indicate a type of replication of the sharer informa-
tion, the replication information is further effective to
identify at least a second segment in the directory, and
the second segment includes a replication of the sharer
information;

after storing the replication information and in response to
detecting an error in the sharer information:

accessing the replication information, and

based on the replication information, using the second
segment to correct the error.

2. The method of claim 1, wherein the replication informa-

tion is further effective to indicate the first segment that stores
the sharer information.

US 9,411,693 B2

15

3. The method of claim 2, wherein the tag identifier
includes a first tag identifier, and wherein the replication
information is further effective to indicate a second tag iden-
tifier.

4. The method of claim 2, wherein at least two or more
segments in the directory are of equal size.

5. The method of claim 1, further comprising storing, by
the controller in the directory, an error correction code in
association with the tag identifier and the state identifier.

6. The method of claim 1, wherein:

storing the sharer information includes storing the sharer

information in a sharer table; and

storing the sharer information in the sharer table includes

storing the sharer information in a sharer table that
includes at least two segments.

7. The method of claim 6, further comprising storing, by
the controller, one or more error detection codes, wherein
each error detection code is associated with one or more
segments in the sharer table.

8. The method of claim 6, wherein storing the replication
information includes storing replication information that is
effective to indicate that the sharer information is replicated in
all segments in a row of the directory.

9. The method of claim 1, wherein:

the data block includes a first data block;

storing the sharer information includes storing the sharer

information in a sharer table, wherein the sharer table
includes the first segment and the second segment;

and

the method further comprises, updating the directory by the

controller so that:

the sharer information is effective to indicate, in the first
segment, a first cache that stores the first data block;

the sharer information is effective to indicate, in the
second segment, the first cache that stores the first
data block; and

the replication information is further effective to indi-
cate that the sharer information in the first segment is
replicated in the second segment.

10. The method of claim 9, wherein:

the sharer table includes a third segment; and

the method further comprises, updating the directory by the

controller so that the sharer information stored in the
third segment is effective to indicate a second cache that
stores the first data block.

11. The method of claim 1, wherein the tag identifier
includes a first tag identifier, the state identifier includes a first
state identifier, and the data block includes a first data block;

wherein storing the sharer information includes storing the

sharer information in association with a second tag iden-
tifier, wherein the second tag identifier is effective to
identify a second data block, and a second state identifier
associated with the second tag identifier is effective to
identify a coherence state of the second data block as
uncached or invalid; and

wherein storing the replication information includes stor-

ing replication information in association with the first
tag identifier, wherein the replication information is
effective to indicate that the sharer information associ-
ated with the first tag identifier is replicated in the sharer
information associated with the second tag identifier.

12. The method of claim 1, wherein:

storing the sharer information in the sharer table includes

storing the sharer information in a sharer table that
includes the first segment and the second segment;

10

15

25

30

35

40

45

50

55

60

65

16

storing the replication information includes storing repli-
cation information that includes a first slot correspond-
ing to the first segment and a second slot corresponding
to the second segment; and
storing the replication information includes storing repli-
cation information that includes a pointer in the first slot
that points to the second segment.
13. The method of claim 1, wherein:
the tag identifier is stored in a first row in the directory; and
the replication information includes a pointer that points to
a second row of the directory.
14. The method of claim 1, wherein:
the data block includes a first data block;
storing the tag identifier includes storing a first tag identi-
fier in a first row of the directory;
storing the sharer information includes storing the sharer
information in a sharer table;
storing the sharer information in the sharer table includes
storing the sharer information in a sharer table that
includes at least two segments; and the method further
comprises:
determining, by the controller, that a number of bits of a
cache identifier corresponding to the caches that store
the first data block is larger than half a total number of
bits in the at least two segments; and

identifying, by the controller, a second tag identifier
stored in a second row of the directory, wherein the
second tag identifier identifies a second data block
and wherein a state identifier associated with the sec-
ond tag identifier indicates an uncached or invalid
state; and

wherein storing the replication information includes
storing, by the controller, replication information for
the first data block in the first row with a pointer that
points to the second row.

15. A method to process a request for a data block in a

multi-core processor, the method comprising:

receiving, by a controller in a cache coherence directory of
the multi-core processor, the request;

identifying, by the controller, a tag identifier associated with
the data block;

analyzing, by the controller:

a state identifier associated with the tag identifier, the state
identifier is effective to indicate a cache coherence state
of the data block,

sharer information associated with the tag identifier,
wherein the sharer information is effective to indicate
one or more caches that store the data block, the sharer
information is stored in a sharer table including at least
a first segment; and

replication information associated with the sharer informa-
tion, wherein the replication information is effective to
indicate a type of replication of the sharer information,
the replication information is further effective to identity
at least a second segment in the sharer table, the second
segment includes areplication of the sharer information;

detecting, by the controller, an error in the first segment in
the sharer table;

in response to detecting the error in the first segment in the
sharer table, identifying, by the controller, using the
replication information, at least the second segment that
includes the replication of the sharer information;

correcting, by the controller, the error based on the repli-
cation information and using the second segment; and

processing, by the controller, the request by analyzing the
sharer information from the identified second segment.

US 9,411,693 B2

17

16. The method of claim 15, wherein detecting the error in
the first segment includes detecting the error using one or
more error detection codes, each associated with one or more
segments in the sharer table.

17. The method of claim 15, wherein processing, by the
controller, the request by analyzing the sharer information
from the identified second segment comprises:

based upon the identified second segment, identitying, by

the controller, address information for one or more
caches in the multi-core processor that store the data
block; and

sending, by the controller, a retrieved address information,

in response to the request.

18. The method of claim 15, wherein identifying the tag
identifier includes identifying a first tag identifier, and
wherein identifying the second segment includes identifying
one or more other segments that are associated with a second
tag identifier.

19. The method of claim 15, wherein the error in the first
segment includes a first error, the method further comprising:

detecting a second error in the identified second segment;

in response to detecting the second error in the identified

second segment:

broadcasting a message to one or more caches of the
multi-core processor;

receiving one or more reply messages from the one or
more caches of the multi-core processor; and

based upon the received reply messages, updating at
least the second segment in the sharer table.

20. A multi-core architecture effective to process a request
for a data block, the architecture comprising:

a first tile including a first processor and a first cache;

a second tile including a second processor and a second

cache;

a controller configured in communication with the first tile

and the second tile; and

wherein the controller is effective to:

monitor memory requests among the first tile and the
second tile; and based on the memory requests:

store, in a directory, a tag identifier effective to identify a

data block;
store, in the directory, a state identifier in association with
the tag identifier, the state identifier effective to identity
a coherence state of the data block;

store, in the directory, sharer information in association
with the tag identifier, wherein the sharer information is
effective to indicate one or more caches that store the
datablock, the one or more caches include the first cache
and the second cache, and the sharer information is
stored in at least a first segment in the directory; and

store, in the directory, replication information in associa-
tion with the tag identifier, wherein the replication infor-
mation is effective to indicate a type of replication of the
sharer information, the replication information is further
effective to identify at least a second segment in the
directory, and the second segment includes a replication
of the sharer information;

after storage of the replication information and in response

to detection of an error in the sharer information:
access the replication information, and

based on the replication information, use the second seg-

ment to correct the error.

21. The architecture of claim 20, wherein the replication
information is further effective to indicate the first segment
that stores the sharer information.

10

15

20

25

30

35

40

45

50

55

60

65

18

22. The architecture of claim 21, wherein the tag identifier
includes a first tag identifier, and wherein the replication
information is further effective to indicate a second tag iden-
tifier.

23. The architecture of claim 20, wherein:

the controller is further configured to store the sharer infor-

mation in a sharer table; and

the sharer table includes at least two segments.

24. The architecture of claim 20, wherein the replication
information is further effective to indicate that the sharer
information is replicated in all segments in a row of the
directory.

25. The architecture of claim 20, wherein:

the controller is configured to store the sharer information

in a sharer table, and wherein:

the data block includes a first data block;

the sharer table includes the first segment, and the second

segment; and

the controller is effective to update the directory so that:

the sharer information indicates, in the first segment, a
first of the one or more caches that stores the first data
block;

the sharer information indicates, in the second segment,
the first of the one or more caches that stores the first
data block; and

the replication information indicates that the sharer
information in the first segment is replicated in the
second segment.

26. The architecture of claim 25, wherein:

the sharer table includes a third segment, wherein the

sharer information stored in the third segment is effec-

tive to indicate a second of the one or more caches that
stores the first data block.

27. The architecture of claim 20, wherein:

the controller is configured to store the sharer information

in a sharer table;

the controller is effective to update the directory so that:

the sharer table includes the first segment and the second
segment;

the replication information includes a first slot corre-
sponding to the first segment and a second slot corre-
sponding to the second segment; and

the replication information includes a pointer in the first
slot effective to point to the second segment.

28. The architecture of claim 20, wherein:

the controller is configured to store the tag identifier in a

first row in the directory; and

the controller is effective to update the directory so that the

replication information in the first row includes a pointer

effective to point to a second row of the directory.

29. The architecture of claim 20, wherein:

the controller is configured to store the sharer information

in a sharer table, wherein the sharer table includes at

least the first segment and the second segment; and

the controller is further configured to:

receive a request for the data block;

analyze the sharer information to identify a cache iden-
tifier stored in the sharer information at least twice;
and

process the cache identifier in response to the request for
the data block.

30. The architecture of claim 20, wherein the controller is
configured to:

store a first tag identifier in a first row of the directory,

where the first tag identifier corresponds to a first data

block; and

US 9,411,693 B2

19

store the sharer information in a sharer table, where the
sharer table includes at least two segments; and the
controller is further effective to:

determine that a number of caches effective to store the first
datablock is greater than half a number of the at least two
segments;

identify a second tag identifier in a second row, where the
second tag identifier identifies a second data block and
wherein a state associated with the second tag identifier
is an uncached or invalid state; and

store replication information for the first data block in the
first row with a pointer effective to point to the second
()

31. The architecture of claim 23, wherein two or more

20

10

segments of the at least two segments in the sharer table are of 15

equal size.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,411,693 B2 Page 1 of 1
APPLICATION NO. : 13/817695

DATED - August 9, 2016

INVENTOR(S) : Solihin

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:
In the specification,
In Column 1, Line 9, delete “§371” and insert -- § 371 --, therefor.
In Column 3, Line 66, delete “and/or memory” and insert -- and/or a memory --, therefor.

In Column 6, Line 48, delete “shared table 186,” and insert -- sharer table 186, --, therefor.

Signed and Sealed this
First Day of November, 2016

Dhecbatle K Zea

Michelle K. Lee
Director of the United States Patent and Trademark Office

